Search results
Results from the WOW.Com Content Network
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers.In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves.
A complex polygon is a (complex) two-dimensional (i.e. four spatial dimensions) analogue of a real polygon. As such it is an example of the more general complex polytope in any number of complex dimensions. In a real plane, a visible figure can be constructed as the real conjugate of some complex polygon.
These Calculators Make Quick Work of Standard Math, Accounting Problems, and Complex Equations Stephen Slaybaugh, Danny Perez, Alex Rennie May 21, 2024 at 2:44 PM
A concrete figure can be generated on the basis of the abstract description. There are several output formats, including LaTeX, LaTeX/PStricks, LaTeX/Tikz, SVG and PostScript. There is a built-in geometry theorem prover (based on the area method). GCLC is available for Windows and Linux. WinGCLC is a Windows version of GCLC with a graphical ...
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
For shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus. [5] For a solid shape such as a sphere, cone, or cylinder, the area of its boundary surface is called the surface area.
giving the basic form of Brahmagupta's formula. It follows from the latter equation that the area of a cyclic quadrilateral is the maximum possible area for any quadrilateral with the given side lengths. A related formula, which was proved by Coolidge, also gives the area of a general convex
The complex plane is associated with two distinct quadratic spaces. For a point z = x + iy in the complex plane, the squaring function z 2 and the norm-squared x 2 + y 2 are both quadratic forms. The former is frequently neglected in the wake of the latter's use in setting a metric on the complex plane.