Search results
Results from the WOW.Com Content Network
SR-50 (1974) Printed circuit board. Data code 035: 3rd week 1975. The SR-50 was Texas Instruments' first scientific pocket calculator with trigonometric and logarithm functions. . It enhanced their earlier SR-10 and SR-11 calculators, introduced in 1973, which had featured scientific notation, squares, square root, and reciprocals, but had no trig or log functions, and lacked other featur
The physical design was an impressive step forward from previous, more boxy, models such as the fx-19; sporting three rows of scientific function keys, a stylish metal fascia and rather novel four-position slide switch on the right side. This switch is used to select the trigonometric mode (Degrees, Radians or Gradians) or statistical operation.
A simple arithmetic calculator was first included with Windows 1.0. [6]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
For angles below 5.7 degrees, sines, tangents, and radians are approximately equal, and are found on the ST or SRT (sines, radians, and tangents) scale, or simply divided by 57.3 degrees/radian. Inverse trigonometric functions are found by reversing the process.
The TI-81 was the first graphing calculator made by Texas Instruments.It was designed in 1990 for use in algebra and precalculus courses. Since its release, it has been superseded by a series of newer calculators: the TI-85, TI-82, TI-83, TI-86, TI-83 Plus, TI-83 Plus Silver Edition, TI-84 Plus, TI-84 Plus Silver Edition, TI-84 Plus C Silver Edition, TI-Nspire, TI-Nspire CAS, TI-84 Plus CE ...
As discussed in § Constructibility, only certain angles that are rational multiples of radians have trigonometric values that can be expressed with square roots. The angle 1°, being π / 180 = π / ( 2 2 ⋅ 3 2 ⋅ 5 ) {\displaystyle \pi /180=\pi /(2^{2}\cdot 3^{2}\cdot 5)} radians, has a repeated factor of 3 in the denominator and therefore ...
[18] [19] Today, the degree, 1 / 360 of a turn, or the mathematically more convenient radian, 1 / 2 π of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions. [23]
The radian is the (derived) unit of angular measurement in the SI. degree: 360: 1° The degree, denoted by a small superscript circle (°), is 1/360 of a turn, so one turn is 360°. One advantage of this old sexagesimal subunit is that many angles common in simple geometry are measured as a whole number of degrees.