enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    In order-theoretic mathematics, the deviation of a poset is an ordinal number measuring the complexity of a poset. A poset is also known as a partially ordered set. The deviation of a poset is used to define the Krull dimension of a module over a ring as the deviation of its poset of submodules.

  4. Fence (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fence_(mathematics)

    An up-down poset Q(a,b) is a generalization of a zigzag poset in which there are a downward orientations for every upward one and b total elements. [5] For instance, Q(2,9) has the elements and relations > > < > > < > >. In this notation, a fence is a partially ordered set of the form Q(1,n).

  5. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    Base.See continuous poset.; Binary relation.A binary relation over two sets is a subset of their Cartesian product.; Boolean algebra.A Boolean algebra is a distributive lattice with least element 0 and greatest element 1, in which every element x has a complement ¬x, such that x ∧ ¬x = 0 and x ∨ ¬x = 1.

  6. Differential poset - Wikipedia

    en.wikipedia.org/wiki/Differential_poset

    In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.

  7. Order dimension - Wikipedia

    en.wikipedia.org/wiki/Order_dimension

    In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order. This concept is also sometimes called the order dimension or the Dushnik–Miller dimension of the partial order.

  8. Greatest element and least element - Wikipedia

    en.wikipedia.org/wiki/Greatest_element_and_least...

    The least and greatest element of the whole partially ordered set play a special role and are also called bottom (⊥) and top (⊤), or zero (0) and unit (1), respectively. If both exist, the poset is called a bounded poset. The notation of 0 and 1 is used preferably when the poset is a complemented lattice, and when no confusion is likely, i ...

  9. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    In mathematics, specifically order theory, the Dedekind–MacNeille completion of a partially ordered set is the smallest complete lattice that contains it. It is named after Holbrook Mann MacNeille whose 1937 paper first defined and constructed it, and after Richard Dedekind because its construction generalizes the Dedekind cuts used by ...