Search results
Results from the WOW.Com Content Network
Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.
The Cieplak effect relies on the stabilizing interaction of mixing full and empty orbitals to delocalize electrons, known as hyperconjugation. [2] When the highest occupied molecular orbital of one system and the lowest unoccupied molecular orbital of another system have comparable energies and spatial overlap, the electrons can delocalize and sink into a lower energy level.
A stirred BZ reaction mixture showing changes in color over time. The discovery of the phenomenon is credited to Boris Belousov.In 1951, while trying to find the non-organic analog to the Krebs cycle, he noted that in a mix of potassium bromate, cerium(IV) sulfate, malonic acid, and citric acid in dilute sulfuric acid, the ratio of concentration of the cerium(IV) and cerium(III) ions ...
Hyperconjugation model for explaining the gauche effect in 1,2-difluoroethane. Key in the bent bond explanation of the gauche effect in difluoroethane is the increased p orbital character of both C−F bonds due to the large electronegativity of fluorine. As a result, electron density builds up above and below to the left and right of the ...
This phenomenon, a type of resonance, can stabilize the molecule or transition state. [2] It also causes an elongation of the σ-bond by adding electron density to its antibonding orbital. [1] Negative hyperconjugation is seldom observed, though it can be most commonly observed when the σ *-orbital is located on certain C–F or C–O bonds ...
This is most commonly explained by hyperconjugation, meaning little to no inductive effects but partial resonance effects. Fig. 2a F values for common substituents. CF 3 has a much higher R/F ratio than other substituents with high degrees of conjugation. This was studied in greater detail by Swain but is still explained best by fluoride ...
As displayed in the scheme, the Hosomi–Sakurai reaction is proposed to give a secondary carbocation intermediate. Secondary carbocations are high in energy, however it is stabilized by the silicon substituent ("β-silicon effect", a form of silicon-hyperconjugation).
Negative hyperconjugation is a theorized phenomenon in organosilicon compounds, in which hyperconjugation stabilizes or destabilizes certain accumulations of positive charge. The phenomenon explains corresponding peculiarities in the stereochemistry and rate of hydrolysis .