Search results
Results from the WOW.Com Content Network
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
The expression under the limit is sometimes called the symmetric difference quotient. [3] [4] A function is said to be symmetrically differentiable at a point x if its symmetric derivative exists at that point. If a function is differentiable (in the usual sense) at a point, then it is also symmetrically differentiable, but the converse is not ...
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
In mathematics, the Rayleigh quotient [1] (/ ˈ r eɪ. l i /) for a given complex Hermitian matrix and nonzero vector is defined as: [2] [3] (,) =. For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric , and the conjugate transpose x ∗ {\displaystyle x^{*}} to the usual transpose x ...
The q-derivative of a function f(x) is defined as [1] [2] [3] () = ().It is also often written as ().The q-derivative is also known as the Jackson derivative.. Formally, in terms of Lagrange's shift operator in logarithmic variables, it amounts to the operator
The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas. In particular further Romberg extrapolations expand on Boole's rule in very slight ways, modifying weights into ratios similar as in Boole's rule.
A good way to estimate the lowest modal vector (), that generally works well for most structures (even though is not guaranteed), is to assume () equal to the static displacement from an applied force that has the same relative distribution of the diagonal mass matrix terms. The latter can be elucidated by the following 3-DOF example.
The requirement that is a positive-definite inner product then says exactly that this matrix-valued function is a symmetric positive-definite matrix at . In terms of the tensor algebra , the Riemannian metric can be written in terms of the dual basis { d x 1 , … , d x n } {\displaystyle \{dx^{1},\ldots ,dx^{n}\}} of the cotangent bundle as