Search results
Results from the WOW.Com Content Network
In both frames of reference, any change in momentum will be found to be consistent with the relevant laws of physics. Suppose x is a position in an inertial frame of reference. From the point of view of another frame of reference, moving at a constant speed u relative to the other, the position (represented by a primed coordinate) changes with ...
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with
If the body is at rest (v = 0), i.e. in its center-of-momentum frame (p = 0), we have E = E 0 and m = m 0; thus the energy–momentum relation and both forms of the mass–energy relation (mentioned above) all become the same. A more general form of relation holds for general relativity.
Angular momentum: L: Measure of the extent and direction an object rotates about a reference point kg⋅m 2 /s L 2 M T −1: conserved, bivector Angular velocity: ω: The angle incremented in a plane by a segment connecting an object and a reference point per unit time rad/s T −1: bivector Area: A: Extent of a surface m 2: L 2: extensive ...