Search results
Results from the WOW.Com Content Network
Chloroplasts, containing thylakoids, visible in the cells of Ptychostomum capillare, a type of moss. A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells.
Cornelis Van Niel proposed in 1931 that photosynthesis is a case of general mechanism where a photon of light is used to photo decompose a hydrogen donor and the hydrogen being used to reduce CO 2. [11] Then in 1939, Robin Hill demonstrated that isolated chloroplasts would make oxygen, but not fix CO
These include the amount of light available, the amount of leaf area a plant has to capture light (shading by other plants is a major limitation of photosynthesis), the rate at which carbon dioxide can be supplied to the chloroplasts to support photosynthesis, the availability of water, and the availability of suitable temperatures for carrying ...
Chloroplasts also need to balance the ratios of photosystem I and II for the electron transfer chain. The redox state of the electron carrier plastoquinone in the thylakoid membrane directly affects the transcription of chloroplast genes encoding proteins of the reaction centers of the photosystems, thus counteracting imbalances in the electron ...
Chlorophyll is vital for photosynthesis, which allows plants to absorb energy from light. [16] Chlorophyll molecules are arranged in and around photosystems that are embedded in the thylakoid membranes of chloroplasts. [17] In these complexes, chlorophyll serves three functions:
The Calvin cycle is present in all photosynthetic eukaryotes and also many photosynthetic bacteria. In plants, these reactions occur in the stroma, the fluid-filled region of a chloroplast outside the thylakoid membranes. These reactions take the products (ATP and NADPH) of light-dependent reactions and perform further chemical processes on them.
Chlamydomonas-a species in which chlororespiration, photosynthesis and respiration occur. Experimentation with respiratory oxidase inhibitors (for instance, cyanide) on unicellular algae has revealed interactive pathways to be present between chloroplasts and mitochondria.
The evolution of oxygen during the light-dependent steps in photosynthesis (Hill reaction) was proposed and proven by British biochemist Robin Hill. He demonstrated that isolated chloroplasts would make oxygen (O 2) but not fix carbon dioxide (CO 2). This is evidence that the light and dark reactions occur at different sites within the cell. [1 ...