enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    For each nonnegative integer n, one can define the product = = of any sequence (a 1, ..., a n) of n elements of a monoid recursively: let p 0 = e and let p m = p m−1 • a m for 1 ≤ m ≤ n. As a special case, one can define nonnegative integer powers of an element x of a monoid: x 0 = 1 and x n = x n −1 • x for n ≥ 1 .

  3. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  4. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Any category with finite products can be regarded as monoidal with the product as the monoidal product and the terminal object as the unit. Such a category is sometimes called a cartesian monoidal category. For example: Set, the category of sets with the Cartesian product, any particular one-element set serving as the unit.

  5. History monoid - Wikipedia

    en.wikipedia.org/wiki/History_monoid

    History monoids were first presented by M.W. Shields. [1] History monoids are isomorphic to trace monoids (free partially commutative monoids) and to the monoid of dependency graphs. As such, they are free objects and are universal. The history monoid is a type of semi-abelian categorical product in the category of monoids.

  6. Monoidal functor - Wikipedia

    en.wikipedia.org/wiki/Monoidal_functor

    In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively.

  7. Rational set - Wikipedia

    en.wikipedia.org/wiki/Rational_set

    A binary relation between monoids M and N is a rational relation if the graph of the relation, regarded as a subset of M×N is a rational set in the product monoid. A function from M to N is a rational function if the graph of the function is a rational set. [4]

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Kleisli category - Wikipedia

    en.wikipedia.org/wiki/Kleisli_category

    Let T, η, μ be a monad over a category C.The Kleisli category of C is the category C T whose objects and morphisms are given by = (), (,) = (,).That is, every morphism f: X → T Y in C (with codomain TY) can also be regarded as a morphism in C T (but with codomain Y).