enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  4. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The vector triple product is defined as the cross product of one vector with the cross product of the other two. The following relationship holds: The following relationship holds: a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=(\mathbf {a} \cdot \mathbf {c} )\mathbf {b ...

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:

  7. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The formalism of dyadic algebra is an extension of vector algebra to include the dyadic product of vectors. The dyadic product is also associative with the dot and cross products with other vectors, which allows the dot, cross, and dyadic products to be combined to obtain other scalars, vectors, or dyadics.

  8. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    Since the vector term of the vector bivector product the name dot product is zero when the vector is perpendicular to the plane (bivector), and this vector, bivector "dot product" selects only the components that are in the plane, so in analogy to the vector-vector dot product this name itself is justified by more than the fact this is the non ...

  9. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    A(e 1, e 2) = 1, since the area of the unit square is one. The cross product (blue vector) in relation to the exterior product (light blue parallelogram). The length of the cross product is to the length of the parallel unit vector (red) as the size of the exterior product is to the size of the reference parallelogram (light red).