enow.com Web Search

  1. Ad

    related to: finding torque using cross product

Search results

  1. Results from the WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    In three dimensions, the torque is a pseudovector; for point particles, it is given by the cross product of the displacement vector and the force vector. The direction of the torque can be determined by using the right hand grip rule : if the fingers of the right hand are curled from the direction of the lever arm to the direction of the force ...

  3. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  4. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  5. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    The equation for torque is very important in angular mechanics. Torque is rotational force and is determined by a cross product. This makes it a pseudovector. = where is torque, r is radius, and is a cross product. Another variation of this equation is:

  6. Line of action - Wikipedia

    en.wikipedia.org/wiki/Line_of_action

    Calculation of torque [ edit ] For the simple geometry associated with the figure, there are three equivalent equations for the magnitude of the torque associated with a force F → {\displaystyle {\vec {F}}} directed at displacement r → {\displaystyle {\vec {r}}} from the axis whenever the force is perpendicular to the axis:

  7. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  8. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [ 2 ] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks.

  9. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    This leads to the definition of the magnetic dipole moment as: = (), where × is the vector cross product, r is the position vector, and j is the electric current density and the integral is a volume integral.

  1. Ad

    related to: finding torque using cross product