enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Particular values of the gamma function. The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.

  3. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    Logarithmic gamma function in the complex plane from −2 − 2i to 2 + 2i with colors. is often used since it allows one to determine function values in one strip of width 1 in z from the neighbouring strip. In particular, starting with a good approximation for a z with large real part one may go step by step down to the desired z.

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43), where he described it as "worthy of serious consideration". [2][3] Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places.

  6. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.

  7. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    y = x 3 for values of 1 ≤ x ≤ 25.. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2 3 = 8 or (x + 1) 3.

  8. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    Power of two. A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. Powers of two with non-negative exponents are integers: 20 = 1, 21 = 2, and 2n is two multiplied by itself n times. [1][2] The first ten powers of 2 for non-negative ...

  9. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    Interval (mathematics) The addition x + a on the number line. All numbers greater than x and less than x + a fall within that open interval. In mathematics, a real interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the ...