Search results
Results from the WOW.Com Content Network
Complex conjugate. Geometric representation (Argand diagram) of and its conjugate in the complex plane. The complex conjugate is found by reflecting across the real axis. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.
Complex number. A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i2 = −1. In mathematics, a complex number is an element of a number system ...
Complex conjugate root theorem. In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1] It follows from this (and the fundamental theorem of algebra) that, if the ...
t. e. In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x -axis, called the real axis, is formed by the real numbers, and the vertical y -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows for a geometric ...
An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i2 = −1. [1][2] The square of an imaginary number bi is −b2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]
The imaginary unit or unit imaginary number (i) is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.
Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator. and of the integration operator [Note 1] and developing a calculus for such operators generalizing the classical one.
Here the function is and therefore the three real roots are 2, −1 and −4. In algebra, a cubic equation in one variable is an equation of the form in which a is not zero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic ...