enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stadimeter - Wikipedia

    en.wikipedia.org/wiki/Stadimeter

    A Mk 5 Mod 0 US Navy Stadimeter made in 1942 by Schick Inc. of Stamford CT. The hand held stadimeter was developed by Bradley Allen Fiske (1854–1942), an officer in the United States Navy. It was designed for gunnery purposes, but its first sea tests, conducted in 1895, showed that it was equally useful for fleet sailing and for navigation.

  3. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition ...

  4. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    Montgomery modular multiplication relies on a special representation of numbers called Montgomery form. The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N. The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product ab ...

  5. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    Wilson's theorem. In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic), the factorial satisfies. exactly when n is a prime number.

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  7. Proofs of Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_Fermat's_little...

    Simplifications. Some of the proofs of Fermat's little theorem given below depend on two simplifications. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1. This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first reduce a modulo p.

  8. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.

  9. Artin reciprocity - Wikipedia

    en.wikipedia.org/wiki/Artin_reciprocity

    The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory. [1]