enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heaviside cover-up method - Wikipedia

    en.wikipedia.org/wiki/Heaviside_cover-up_method

    With this framework we apply the cover-up rule to solve for A, B, and C. D 1 is x + 1; set it equal to zero. This gives the residue for A when x = −1. Next, substitute this value of x into the fractional expression, but without D 1. Put this value down as the value of A. Proceed similarly for B and C. D 2 is x + 2; For the residue B use x = −2.

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    x 5x (mod 5) y 5 ≡ y (mod 5) z 5 ≡ z (mod 5) and therefore x + y + z ≡ 0 (mod 5) This equation forces two of the three numbers x, y, and z to be equivalent modulo 5, which can be seen as follows: Since they are indivisible by 5, x, y and z cannot equal 0 modulo 5, and must equal one of four possibilities: 1, −1, 2, or −2. If they ...

  4. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Equivalent statement 1: x n + y n = z n, where integer n ≥ 3, has no non-trivial solutions x, y, z ∈ Z. The equivalence is clear if n is even. If n is odd and all three of x, y, z are negative, then we can replace x, y, z with −x, −y, −z to obtain a solution in N. If two of them are negative, it must be x and z or y and z.

  5. Equating coefficients - Wikipedia

    en.wikipedia.org/wiki/Equating_coefficients

    In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term.

  6. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x1. Or x and y can both be treated as unknowns, and then there are many solutions to the equation; a symbolic solution is (x, y) = (a + 1, a), where the variable a may take any value. Instantiating a symbolic solution with specific numbers ...

  7. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  8. Bernoulli number - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_number

    In mathematics, the Bernoulli numbers B n are a sequence of rational numbers which occur frequently in analysis.The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain ...

  9. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    In either case the full quartic can then be divided by the factor (x1) or (x + 1) respectively yielding a new cubic polynomial, which can be solved to find the quartic's other roots. If a 1 = a 0 k , {\displaystyle \ a_{1}=a_{0}k\ ,} a 2 = 0 {\displaystyle \ a_{2}=0\ } and a 4 = a 3 k , {\displaystyle \ a_{4}=a_{3}k\ ,} then x = − k ...