Search results
Results from the WOW.Com Content Network
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter ...
M N−1. In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
By this definition, the number of equivalents of a given ion in a solution is equal to the number of moles of that ion multiplied by its valence. For example, consider a solution of 1 mole of NaCl and 1 mole of CaCl 2. The solution has 1 mole or 1 equiv Na +, 1 mole or 2 equiv Ca 2+, and 3 mole or 3 equiv Cl −.
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]
Historically, N 0 approximates the number of nucleons (protons or neutrons) in one gram of ordinary matter. The Avogadro constant (symbol N A = N 0 /mol) has numerical multiplier given by the Avogadro number with the unit reciprocal mole (mol −1). [2] The ratio n = N/N A is a measure of the amount of substance (with the unit mole). [2] [3] [4]
The number of molecules per mole in a substance is given by the Avogadro constant, exactly 6.022 140 76 × 10 23 mol −1 since the 2019 revision of the SI. Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In chemistry, the mass fraction of a substance within a mixture is the ratio (alternatively denoted ) of the mass of that substance to the total mass of the mixture. [1] Expressed as a formula, the mass fraction is: tot {\displaystyle w_ {i}= {\frac {m_ {i}} {m_ {\text {tot}}}}.} Because the individual masses of the ingredients of a mixture sum ...