enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...

  3. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    Wilson's theorem. In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic), the factorial satisfies. exactly when n is a prime number.

  4. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    Congruence relation. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. [1]

  5. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.

  6. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  7. Wolstenholme's theorem - Wikipedia

    en.wikipedia.org/wiki/Wolstenholme's_theorem

    In mathematics, Wolstenholme's theorem states that for a prime number , the congruence. {\displaystyle {2p-1 \choose p-1}\equiv 1 {\pmod {p^ {3}}}} holds, where the parentheses denote a binomial coefficient. For example, with p = 7, this says that 1716 is one more than a multiple of 343. The theorem was first proved by Joseph Wolstenholme in 1862.

  8. Thue's lemma - Wikipedia

    en.wikipedia.org/wiki/Thue's_lemma

    The first known proof is attributed to Axel Thue [2] who used a pigeonhole argument. [3] It can be used to prove Fermat's theorem on sums of two squares by taking m to be a prime p that is congruent to 1 modulo 4 and taking a to satisfy a 2 + 1 ≡ 0 mod p. (Such an "a" is guaranteed for "p" by Wilson's theorem. [4])

  9. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.