enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [ a ] The word isometry is derived from the Ancient Greek : ἴσος isos meaning "equal", and μέτρον metron meaning "measure".

  3. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. [1] [self-published source] [2] [3] The rigid transformations include rotations, translations, reflections, or any

  4. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    An isometry of the Euclidean plane is a distance-preserving transformation of the ... have the effect of reflecting the point p in the line L that is perpendicular to ...

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation.

  6. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    For example, if the affine transformation acts on the plane and if the determinant of is 1 or −1 then the transformation is an equiareal mapping. Such transformations form a subgroup called the equi-affine group. [13] A transformation that is both equi-affine and a similarity is an isometry of the plane taken with Euclidean distance.

  7. Beckman–Quarles theorem - Wikipedia

    en.wikipedia.org/wiki/Beckman–Quarles_theorem

    In geometry, the Beckman–Quarles theorem states that if a transformation of the Euclidean plane or a higher-dimensional Euclidean space preserves unit distances, then it preserves all Euclidean distances. Equivalently, every homomorphism from the unit distance graph of the plane to itself must be an isometry of the plane. The theorem is named ...

  8. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or pseudo-Euclidean spaces, a point reflection is an isometry (preserves distance). [1]

  9. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    One takes f(0) to be the identity transformation I of , which describes the initial position of the body. The position and orientation of the body at any later time t will be described by the transformation f(t). Since f(0) = I is in E + (3), the same must be true of f(t) for any later time. For that reason, the direct Euclidean isometries are ...