Search results
Results from the WOW.Com Content Network
In the abdomen, general visceral afferent fibers usually accompany sympathetic efferent fibers. This means that a signal traveling in an afferent fiber will begin at sensory receptors in the afferent fiber's target organ, travel up to the ganglion where the sympathetic efferent fiber synapses, continue back along a splanchnic nerve from the ganglion into the sympathetic trunk, move into a ...
The vagus nerve is also responsible for regulating inflammation in the body, via the inflammatory reflex. [7] Efferent vagus nerve fibers innervating the pharynx and back of the throat are responsible for the gag reflex. In addition, 5-HT 3 receptor-mediated afferent vagus stimulation in the gut due to gastroenteritis is a cause of vomiting. [8]
Vagovagal reflex refers to gastrointestinal tract reflex circuits where afferent and efferent fibers of the vagus nerve [1] coordinate responses to gut stimuli via the dorsal vagal complex in the brain. The vagovagal reflex controls contraction of the gastrointestinal muscle layers in response to distension of the tract by food.
The solitary nucleus receives general visceral and special visceral inputs from the facial nerve (CN VII), glossopharyngeal nerve (CN IX) and vagus nerve (CN X); it receives and relays stimuli related to taste and visceral sensation. It sends outputs to various parts of the brain, such as the hypothalamus, thalamus, and reticular formation ...
The splanchnic nerves are paired visceral nerves (nerves that contribute to the innervation of the internal organs), carrying fibers of the autonomic nervous system (visceral efferent fibers) as well as sensory fibers from the organs (visceral afferent fibers).
Layers of the Alimentary Canal.The wall of the alimentary canal has four basic tissue layers: the mucosa, submucosa, muscularis, and serosa. The enteric nervous system in humans consists of some 500 million neurons [11] (including the various types of Dogiel cells), [1] [12] 0.5% of the number of neurons in the brain, five times as many as the one hundred million neurons in the human spinal ...
An action potential (or nerve impulse) is a transient alteration of the transmembrane voltage (or membrane potential) across the membrane in an excitable cell generated by the activity of voltage-gated ion channels embedded in the membrane. The best known action potentials are pulse-like waves that travel along the axons of neurons. Membrane ...
Afferent neurons are pseudounipolar neurons that have a single process leaving the cell body dividing into two branches: the long one towards the sensory organ, and the short one toward the central nervous system (e.g. spinal cord). These cells do have sensory afferent dendrites, similar to those typically inherent in neurons. [1]