Search results
Results from the WOW.Com Content Network
The moment of inertia is defined as the product of mass of section and the square of the distance between the reference axis and the centroid of the section. Spinning figure skaters can reduce their moment of inertia by pulling in their arms, allowing them to spin faster due to conservation of angular momentum.
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
In physics, moment of inertia is strictly the second moment of mass with respect to distance from an axis: =, where r is the distance to some potential rotation axis, and the integral is over all the infinitesimal elements of mass, dm, in a three-dimensional space occupied by an object Q. The MOI, in this sense, is the analog of mass for ...
The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.
I is the second moment of area (or area moment of inertia, not to be confused with moment of inertia), and c is the distance from the neutral axis to the most extreme fibre. It is used to determine the yield moment strength of a section [1] = where σ y is the yield strength of the material.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...