Search results
Results from the WOW.Com Content Network
Letting TR be the total revenue function: () = (), [1] where Q is the quantity of output sold, and P(Q) is the inverse demand function (the demand function solved out for price in terms of quantity demanded).
Total costs = fixed costs + (unit variable cost × number of units) Total revenue = sales price × number of unit These are linear because of the assumptions of constant costs and prices, and there is no distinction between units produced and units sold, as these are assumed to be equal.
Multiply the inverse demand function by Q to derive the total revenue function: TR = (120 - .5Q) × Q = 120Q - 0.5Q². The marginal revenue function is the first derivative of the total revenue function or MR = 120 - Q. Note that in this linear example the MR function has the same y-intercept as the inverse demand function, the x-intercept of ...
Total revenue, the product price times the quantity of the product demanded, can be represented at an initial point by a rectangle with corners at the following four points on the demand graph: price (P 1), quantity demanded (Q 1), point A on the demand curve, and the origin (the intersection of the price axis and the quantity axis).
The total cost, total revenue, and fixed cost curves can each be constructed with simple formula. For example, the total revenue curve is simply the product of selling price times quantity for each output quantity. The data used in these formula come either from accounting records or from various estimation techniques such as regression analysis.
Profit maximization using the total revenue and total cost curves of a perfect competitor. To obtain the profit maximizing output quantity, we start by recognizing that profit is equal to total revenue minus total cost (). Given a table of costs and revenues at each quantity, we can either compute equations or plot the data directly on a graph.
If the revenue is the same as the cost, profit percentage is 0%. The result above or below 100% can be calculated as the percentage of return on investment. In this example, the return on investment is a multiple of 1.5 of the investment, corresponding to a 150% gain.
We know that project will be completed in 2 years. Now, after the first year we see that total cost incurred in this first year is $3,000. So according to the percentage-of-completion method: Cost percentage = 3000/10000 = 30%; so we will recognize 30% revenue in the income statement for the first year.