Search results
Results from the WOW.Com Content Network
Specific energy is an intensive property, whereas energy and mass are extensive properties. The SI unit for specific energy is the joule per kilogram (J/kg). Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W
The rad is a unit of absorbed radiation dose, defined as 1 rad = 0.01 Gy = 0.01 J/kg. [1] It was originally defined in CGS units in 1953 as the dose causing 100 ergs of energy to be absorbed by one gram of matter. The material absorbing the radiation can be human tissue, air, water, or any other substance.
Energy is defined via work, so the SI unit of energy is the same as the unit of work – the joule (J), named in honour of James Prescott Joule [1] and his experiments on the mechanical equivalent of heat. In slightly more fundamental terms, 1 joule is equal to 1 newton metre and, in terms of SI base units
Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
Any of various units of energy, such as gigatons of TNT equivalent, gigatons of coal equivalent, gigatons petroleum equivalent. Gray (unit) – (symbol: Gy), is the SI unit of energy for the absorbed dose of radiation. One gray is the absorption of one joule of radiation energy by one kilogram of matter. One gray equals 100 rad, an older unit. Heat
Ionizing radiation energy absorbed per unit mass gray (Gy = J/kg) L 2 T −2: Radiance: L: Power of emitted electromagnetic radiation per unit solid angle per emitting source area W/(m 2 ⋅sr) M T −3: Radiant intensity: I: Power of emitted electromagnetic radiation per unit solid angle W/sr L 2 M T −3: scalar Reaction rate: r: Rate of a ...
In radiation physics, kerma is an acronym for "kinetic energy released per unit mass" (alternately, "kinetic energy released in matter", [1] "kinetic energy released in material", [2] or "kinetic energy released in materials" [3]), defined as the sum of the initial kinetic energies of all the charged particles liberated by uncharged ionizing radiation (i.e., indirectly ionizing radiation such ...
Radioisotope time constant, mean lifetime of an atom before decay τ (no standard symbol) = / s [T] Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass) D can only be found experimentally N/A Gy = 1 J/kg (Gray) [L] 2 [T] −2: Equivalent dose: H =