Search results
Results from the WOW.Com Content Network
GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [ note 1 ] while in R the desired effect can be achieved via the c() or as.vector() functions.
Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
In mathematics, vector algebra may mean: The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space
In mathematics, Voigt notation or Voigt form in multilinear algebra is a way to represent a symmetric tensor by reducing its order. [1] There are a few variants and associated names for this idea: Mandel notation, Mandel–Voigt notation and Nye notation are others found.
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
Automatic vectorization, a compiler optimization that transforms loops to vector operations; Image tracing, the creation of vector from raster graphics; Word embedding, mapping words to vectors, in natural language processing
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is