enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Some authors use the term Gaussian elimination to refer only to the procedure until the matrix is in echelon form, and use the term Gauss–Jordan elimination to refer to the procedure which ends in reduced echelon form. The name is used because it is a variation of Gaussian elimination as described by Wilhelm Jordan in 1888. However, the ...

  3. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.

  4. Kleene's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kleene's_algorithm

    After that, in each step the expressions R k ij are computed from the previous ones by R k ij = R k-1 ik (R k-1 kk) * R k-1 kj | R k-1 ij. Another way to understand the operation of the algorithm is as an "elimination method", where the states from 0 to n are successively removed: when state k is removed, the regular expression R k-1

  5. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations.

  6. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    Elimination theory culminated with the work of Leopold Kronecker, and finally Macaulay, who introduced multivariate resultants and U-resultants, providing complete elimination methods for systems of polynomial equations, which are described in the chapter on Elimination theory in the first editions (1930) of van der Waerden's Moderne Algebra.

  7. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  8. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    Fraction-free algorithm — uses division to keep the intermediate entries smaller, but due to the Sylvester's Identity the transformation is still integer-preserving (the division has zero remainder). For completeness Bareiss also suggests fraction-producing multiplication-free elimination methods. [2]

  9. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    For this reason, the Euler method is said to be a first-order method, while the midpoint method is second order. We can extrapolate from the above table that the step size needed to get an answer that is correct to three decimal places is approximately 0.00001, meaning that we need 400,000 steps.