Search results
Results from the WOW.Com Content Network
Two examples (r = −1 and r = 2) are given below: The scalar multiplications −a and 2a of a vector a. Scalar multiplication is distributive over vector addition in the following sense: r(a + b) = ra + rb for all vectors a and b and all scalars r. One can also show that a − b = a + (−1)b.
Every operator on a non-trivial complex finite dimensional vector space has an eigenvector, solving the invariant subspace problem for these spaces. In the field of mathematics known as functional analysis , the invariant subspace problem is a partially unresolved problem asking whether every bounded operator on a complex Banach space sends ...
The determination of the upper bound for the number of limit cycles in two-dimensional polynomial vector fields of degree n and an investigation of their relative positions. The first problem is yet unsolved for n = 8. Therefore, this problem is what usually is meant when talking about Hilbert's sixteenth problem in real algebraic geometry.
That is to say, the north vector cannot be described in terms of the east vector, and vice versa. The third "5 miles northeast" vector is a linear combination of the other two vectors, and it makes the set of vectors linearly dependent, that is, one of the three vectors is unnecessary to define a specific location on a plane.
The cyclic subspace associated with a vector v in a vector space V and a linear transformation T of V is called the T-cyclic subspace generated by v. The concept of a cyclic subspace is a basic component in the formulation of the cyclic decomposition theorem in linear algebra.
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.
Any eigenvector for T spans a 1-dimensional invariant subspace, and vice-versa. In particular, a nonzero invariant vector (i.e. a fixed point of T) spans an invariant subspace of dimension 1. As a consequence of the fundamental theorem of algebra, every linear operator on a nonzero finite-dimensional complex vector space has an eigenvector ...
The hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) [1] states that there is no nonvanishing continuous tangent vector field on even-dimensional n-spheres. [2] [3] For the ordinary sphere, or 2‑sphere, if f is a continuous function that assigns a vector in ℝ 3 to every point p on a sphere such that ...