Search results
Results from the WOW.Com Content Network
The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [1]It is named for Hugo Martin Tetrode [2] (1895–1931) and Otto Sackur [3] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
In thermodynamics, the entropy of mixing is the increase in the total entropy when several initially separate systems of different composition, each in a thermodynamic state of internal equilibrium, are mixed without chemical reaction by the thermodynamic operation of removal of impermeable partition(s) between them, followed by a time for establishment of a new thermodynamic state of internal ...
Below are useful results from the Maxwell–Boltzmann distribution for an ideal gas, and the implications of the Entropy quantity. The distribution is valid for atoms or molecules constituting ideal gases.
The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.
In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by (,) = (,) + . In this expression C P now is the molar heat capacity. The entropy of inhomogeneous ...
The standard molar entropy of a gas at STP includes contributions from: [2] The heat capacity of one mole of the solid from 0 K to the melting point (including heat absorbed in any changes between different crystal structures). The latent heat of fusion of the solid. The heat capacity of the liquid from the melting point to the boiling point.
Substituting from the ideal gas equation gives finally: = where n = number of moles of gas in the thermodynamic system under consideration and R = universal gas constant. On a per mole basis, the expression for difference in molar heat capacities becomes simply R for ideal gases as follows: