Search results
Results from the WOW.Com Content Network
A function [d] A relation that is functional and total. For example, the red and green relations in the diagram are functions, but the blue and black ones are not. An ...
Diagram of a function Diagram of a relation that is not a function. One reason is that 2 is the first element in more than one ordered pair. Another reason is that neither 3 nor 4 are the first element (input) of any ordered pair therein. The above definition of a function is essentially that of the founders of calculus, Leibniz, Newton and Euler.
This broad definition of a function encompasses more relations than are ordinarily considered functions in contemporary mathematics. For example, Hardy's definition includes multivalued functions and what in computability theory are called partial functions .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Holomorphic function: complex-valued function of a complex variable which is differentiable at every point in its domain. Meromorphic function: complex-valued function that is holomorphic everywhere, apart from at isolated points where there are poles. Entire function: A holomorphic function whose domain is the entire complex plane.
Three quotients are exhibited here: left residual, right residual, and symmetric quotient. The left residual of two relations is defined presuming that they have the same domain (source), and the right residual presumes the same codomain (range, target). The symmetric quotient presumes two relations share a domain and a codomain. Definitions:
Mathematical relations fall into various types according to their specific properties, often as expressed in the axioms or definitions that they satisfy. Many of these types of relations are listed below.
For a function to have an inverse, it must be one-to-one.If a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the function = defined on the whole of is not one-to-one since = for any .