Search results
Results from the WOW.Com Content Network
It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713). [2] The mathematical formalization and advanced formulation of the Bernoulli trial is known as the Bernoulli process. Since a Bernoulli trial has only two possible outcomes, it can be framed as a "yes or no" question. For example:
The categorical distribution is the generalization of the Bernoulli distribution for variables with any constant number of discrete values. The Beta distribution is the conjugate prior of the Bernoulli distribution. [5] The geometric distribution models the number of independent and identical Bernoulli trials needed to get one success.
Another key theory developed in this part is the probability of achieving at least a certain number of successes from a number of binary events, today named Bernoulli trials, [20] given that the probability of success in each event was the same.
In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.
The practical problem of checking whether a coin is fair might be considered as easily solved by performing a sufficiently large number of trials, but statistics and probability theory can provide guidance on two types of question; specifically those of how many trials to undertake and of the accuracy of an estimate of the probability of ...
The component Bernoulli variables X i are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin (but with consistent unfairness). Every variable X i in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution.
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
A fixed number of repetitions of the same experiment can be thought of as a composed experiment, in which case the individual repetitions are called trials. For example, if one were to toss the same coin one hundred times and record each result, each toss would be considered a trial within the experiment composed of all hundred tosses. [3]