Search results
Results from the WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).
This equation is often represented using derivative notation such that =, where dm is the elementary magnetic moment and dV is the volume element. The net magnetic moment of the magnet m therefore is m = ∭ M d V , {\displaystyle \mathbf {m} =\iiint \mathbf {M} \,\mathrm {d} V,} where the triple integral denotes integration over the volume of ...
In units of the Bohr magneton (μ B), it is −1.001 159 652 180 59 (13) μ B, [2] a value that was measured with a relative accuracy of 1.3 × 10 −13. Magnetic moment of an electron [ edit ]
Here μ 0 is the permeability of free space; M the magnetization (magnetic moment per unit volume), B = μ 0 H is the magnetic field, and C the material-specific Curie constant: = (+), where k B is the Boltzmann constant, N the number of magnetic atoms (or molecules) per unit volume, g the Landé g-factor, μ B the Bohr magneton, J the angular ...
Since a gyromagnetic factor equal to 2 follows from Dirac's equation, it is a frequent misconception to think that a g-factor 2 is a consequence of relativity; it is not. The factor 2 can be obtained from the linearization of both the Schrödinger equation and the relativistic Klein–Gordon equation (which leads to Dirac's).
Here is the Bohr magneton and is the nuclear magneton. This last approximation is justified because μ N {\displaystyle \mu _{N}} is smaller than μ B {\displaystyle \mu _{B}} by the ratio of the electron mass to the proton mass.
where N is the Avogadro constant, g is the Landé g-factor, and μ B is the Bohr magneton. In this treatment it has been assumed that the electronic ground state is not degenerate, that the magnetic susceptibility is due only to electron spin and that only the ground state is thermally populated.