Search results
Results from the WOW.Com Content Network
The heating value depends on the source of gas that is used and the process that is used to liquefy the gas. The range of heating value can span ±10 to 15 percent. A typical value of the higher heating value of LNG is approximately 50 MJ/kg or 21,500 BTU/lb. [2] A typical value of the lower heating value of LNG is 45 MJ/kg or 19,350 BTU/lb.
(760 mmHg = 101.325 kPa = 1.000 atm = normal pressure) This example shows a severe problem caused by using two different sets of coefficients. The described vapor pressure is not continuous—at the normal boiling point the two sets give different results. This causes severe problems for computational techniques which rely on a continuous vapor ...
If a sufficient amount of liquid is vaporized within a closed container, it produces pressures that can rupture the pressure vessel. Hence the use of pressure relief valves and vent valves are important. [2] The expansion ratio of liquefied and cryogenic from the boiling point to ambient is: nitrogen – 1 to 696; liquid helium – 1 to 745 ...
At ambient pressure the boiling point of liquefied helium is 4.22 K (−268.93 °C). Below 2.17 K liquid 4 He becomes a superfluid (Nobel Prize 1978, Pyotr Kapitsa) and shows characteristic properties such as heat conduction through second sound, zero viscosity and the fountain effect among others.
The boiling point corresponds to the temperature at which the vapor pressure of the liquid equals the surrounding environmental pressure. Thus, the boiling point is dependent on the pressure. Boiling points may be published with respect to the NIST, USA standard pressure of 101.325 kPa (1 atm), or the IUPAC standard pressure of 100.000 kPa (1 ...
It is useful to note that for N 2 the normal boiling point of the liquid is 77.4 K and the critical point is at 126.2 K and 34.0 bar. Overview of the temperature and pressure dependence of the compressibility factor for N 2. The figure on the right shows an overview covering a wide temperature range.
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [1] 760 Torr, 101.325 kPa, or 14.69595 psi. For example, at any given temperature, methyl chloride has the highest vapor pressure of any of the liquids in the chart.