Search results
Results from the WOW.Com Content Network
The range and the maximum height of the projectile do not depend upon its mass. Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction. The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height ( y = 0 {\textstyle y=0} ).
The path of this projectile launched from a height y 0 has a range d. In physics, a projectile launched with specific initial conditions will have a range. It may be more predictable assuming a flat Earth with a uniform gravity field, and no air resistance. The horizontal ranges of a projectile are equal for two complementary angles of ...
Writing in Physics Today in 2011, ... This is the maximum height that a siphon will work. Substituting values will give approximately 10 m (33 feet) ...
To find the angle giving the maximum height for a given speed calculate the derivative of the maximum height = / with respect to , that is = / which is zero when = / =. So the maximum height H m a x = v 2 2 g {\displaystyle H_{\mathrm {max} }={v^{2} \over 2g}} is obtained when the projectile is fired straight up.
Significant wave height H 1/3, or H s or H sig, as determined in the time domain, directly from the time series of the surface elevation, is defined as the average height of that one-third of the N measured waves having the greatest heights: [5] / = = where H m represents the individual wave heights, sorted into descending order of height as m increases from 1 to N.
The current world-record for highest cannon projectile flight is held by Project HARP’s 410 mm (16 in) space gun prototype, which fired a 180 kg (400 lb) Martlet 2 projectile to a record height of 180 kilometres (590,000 ft; 110 mi) in Yuma, Arizona, on November 18, 1966.
The BLAST high-altitude balloon just before launch on June 12, 2005. High-altitude balloons or stratostats are usually uncrewed balloons typically filled with helium or hydrogen and released into the stratosphere, generally attaining between 18 and 37 km (11 and 23 mi; 59,000 and 121,000 ft) above sea level.
Jurin's law, or capillary rise, is the simplest analysis of capillary action—the induced motion of liquids in small channels [1] —and states that the maximum height of a liquid in a capillary tube is inversely proportional to the tube's diameter.