Search results
Results from the WOW.Com Content Network
Submerged specific gravity is a dimensionless measure of an object's buoyancy when immersed in a fluid.It can be expressed in terms of the equation = where stands for "submerged specific gravity", is the density of the object, and is the density of the fluid.
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.
Archimedes' interests in the conditions of stability for solid bodies are found both here and in his studies of the lever and centre of gravity in On the Equilibrium of Planes I-II. Book one of On Floating Bodies begins with a derivation of the Law of Buoyancy and ends with a proof that a floating segment of a homogeneous solid sphere is always ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The procedure, pioneered by Behnke, Feen and Welham as means to later quantify the relation between specific gravity and the fat content, [1] is based on Archimedes' principle, which states that: The buoyant force which water exerts on an immersed object is equal to the weight of water that the object displaces.
The Archimedes number is applied often in the engineering of packed beds, which are very common in the chemical processing industry. [3] A packed bed reactor, which is similar to the ideal plug flow reactor model, involves packing a tubular reactor with a solid catalyst, then passing incompressible or compressible fluids through the solid bed. [3]
where R is the submerged specific gravity of the sediment. The second assumption is that the particle Reynolds number is high. This typically applies to particles of gravel-size or larger in a stream, and means the critical shear stress is constant.
Specific gravity of solids, = Note that specific weight , conventionally denoted by the symbol γ {\displaystyle \gamma } may be obtained by multiplying the density ( ρ {\displaystyle \rho } ) of a material by the acceleration due to gravity, g {\displaystyle g} .