Search results
Results from the WOW.Com Content Network
Decarboxylations are pervasive in biology. They are often classified according to the cofactors that catalyze the transformations. [11] Biotin-coupled processes effect the decarboxylation of malonyl-CoA to acetyl-CoA. Thiamine (T:) is the active component for decarboxylation of alpha-ketoacids, including pyruvate: T: + RC(O)CO 2 H → T=C(OH)R ...
Pyruvate decarboxylase is an enzyme (EC 4.1.1.1) that catalyses the decarboxylation of pyruvic acid to acetaldehyde.It is also called 2-oxo-acid carboxylase, alpha-ketoacid carboxylase, and pyruvic decarboxylase. [1]
Studies of decarboxylation over nickel and palladium-based catalysts were first reported by Wilhelm Maier et al., in 1982, [6] when they achieved the deoxygenation of several carboxylic acids via decarboxylation under a hydrogen atmosphere. This included the conversion of aliphatic acids (such as heptanoic and octanoic acids) to alkanes (namely ...
Pyruvate decarboxylation or pyruvate oxidation, also known as the link reaction (or oxidative decarboxylation of pyruvate [1]), is the conversion of pyruvate into acetyl-CoA by the enzyme complex pyruvate dehydrogenase complex. [2] [3] The reaction may be simplified as: Pyruvate + NAD + + CoA → Acetyl-CoA + NADH + CO 2
Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. [1] Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate ...
In contrast to the relatively facile decarboxylation of β-keto acids, the decarboxylation of α-keto acids presents a mechanistic challenge. Thiamine pyrophosphate (TPP) provides the biochemical and enzymological answer. TPP is the key catalytic cofactor used by enzymes catalyzing non-oxidative and oxidative decarboxylation of α-keto acids.
In enzymology, an oxalate decarboxylase (EC 4.1.1.2) is an oxalate degrading enzyme that catalyzes the chemical reaction. oxalate + H + formate + CO 2. Thus, the two substrates of this enzyme are oxalate and H +, whereas its two products are formate and CO 2.
The enzyme histidine decarboxylase (EC 4.1.1.22, HDC) is transcribed on chromosome 15, region q21.1-21.2, and catalyzes the decarboxylation of histidine to form histamine. In mammals, histamine is an important biogenic amine with regulatory roles in neurotransmission, gastric acid secretion and immune response.