enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entner–Doudoroff pathway - Wikipedia

    en.wikipedia.org/wiki/Entner–Doudoroff_pathway

    There are several bacteria that use the Entner–Doudoroff pathway for metabolism of glucose and are unable to catabolize via glycolysis (e.g., therefore lacking essential glycolytic enzymes such as phosphofructokinase as seen in Pseudomonas). [1]

  3. Catabolite repression - Wikipedia

    en.wikipedia.org/wiki/Catabolite_repression

    For example, if E. coli is placed on an agar plate containing only glucose and lactose, the bacteria will use glucose first and lactose second. When glucose is available in the environment, the synthesis of β-galactosidase is under repression due to the effect of catabolite repression caused by glucose.

  4. Glucose - Wikipedia

    en.wikipedia.org/wiki/Glucose

    Glucose circulates in the blood of animals as blood sugar. [6] [8] The naturally occurring form is d-glucose, while its stereoisomer l-glucose is produced synthetically in comparatively small amounts and is less biologically active. [8] Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose ...

  5. PEP group translocation - Wikipedia

    en.wikipedia.org/wiki/PEP_group_translocation

    The phosphotransferase system is involved in transporting many sugars into bacteria, including glucose, mannose, fructose and cellobiose. PTS sugars can differ between bacterial groups, mirroring the most suitable carbon sources available in the environment every group evolved.

  6. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. [1] In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the ...

  7. Lactic acid fermentation - Wikipedia

    en.wikipedia.org/wiki/Lactic_acid_fermentation

    These bacteria produce lactic acid in the milk culture, decreasing its pH and causing it to congeal. The bacteria also produce compounds that give yogurt its distinctive flavor. An additional effect of the lowered pH is the incompatibility of the acidic environment with many other types of harmful bacteria. [10] [18]

  8. Fermentation - Wikipedia

    en.wikipedia.org/wiki/Fermentation

    [1] [2] During fermentation, organic molecules (e.g., glucose) are catabolized and donate electrons to other organic molecules. In the process, ATP and organic end products (e.g., lactate) are formed. Because oxygen is not required, it is an alternative to aerobic respiration. Over 25% of bacteria and archaea carry out fermentation.

  9. Dextran - Wikipedia

    en.wikipedia.org/wiki/Dextran

    Dextran is a complex branched glucan (polysaccharide derived from the condensation of glucose), originally derived from wine. IUPAC defines dextrans as "Branched poly-α-d-glucosides of microbial origin having glycosidic bonds predominantly C-1 → C-6". [1] Dextran chains are of varying lengths (from 3 to 2000 kilodaltons).