enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    In chemistry, molecules with a non-collinear arrangement of two adjacent bonds have bent molecular geometry, also known as angular or V-shaped. Certain atoms, such as oxygen, will almost always set their two (or more) covalent bonds in non-collinear directions due to their electron configuration .

  3. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    For example, carbon dioxide and nitric oxide have a linear molecular shape. Trigonal planar: Molecules with the trigonal planar shape are somewhat triangular and in one plane (flat). Consequently, the bond angles are set at 120°. For example, boron trifluoride. Angular: Angular molecules (also called bent or V-shaped) have a non

  4. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Shape of water molecule showing that the real bond angle 104.5° deviates from the ideal sp 3 angle of 109.5°. In chemistry, Bent's rule describes and explains the relationship between the orbital hybridization and the electronegativities of substituents. [1] [2] The rule was stated by Henry A. Bent as follows: [2]

  5. Bent bond - Wikipedia

    en.wikipedia.org/wiki/Bent_bond

    The term itself is a general representation of electron density or configuration resembling a similar "bent" structure within small ring molecules, such as cyclopropane (C 3 H 6) or as a representation of double or triple bonds within a compound that is an alternative to the sigma and pi bond model.

  6. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    A molecule may be nonpolar either when there is an equal sharing of electrons between the two atoms of a diatomic molecule or because of the symmetrical arrangement of polar bonds in a more complex molecule. For example, boron trifluoride (BF 3) has a trigonal planar arrangement of three polar bonds at 120°. This results in no overall dipole ...

  7. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    A bond of higher bond order also exerts greater repulsion since the pi bond electrons contribute. [10] For example in isobutylene, (H 3 C) 2 C=CH 2, the H 3 C−C=C angle (124°) is larger than the H 3 C−C−CH 3 angle (111.5°). However, in the carbonate ion, CO 2− 3, all three C−O bonds are equivalent with angles of 120° due to resonance.

  8. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In the gas phase, a single water molecule has an oxygen atom surrounded by two hydrogens and two lone pairs, and the H 2 O geometry is simply described as bent without considering the nonbonding lone pairs. [citation needed] However, in liquid water or in ice, the lone pairs form hydrogen bonds with neighboring water molecules. The most common ...

  9. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    According to the VSEPR theory of molecular geometry, an axial position is more crowded because an axial atom has three neighboring equatorial atoms (on the same central atom) at a 90° bond angle, whereas an equatorial atom has only two neighboring axial atoms at a 90° bond angle. For molecules with five identical ligands, the axial bond ...