Search results
Results from the WOW.Com Content Network
The Larmor formula can only be used for non-relativistic particles, which limits its usefulness. The Liénard-Wiechert potential is a more comprehensive formula that must be employed for particles travelling at relativistic speeds. In certain situations, more intricate calculations including numerical techniques or perturbation theory could be ...
Larmor precession is important in nuclear magnetic resonance, magnetic resonance imaging, electron paramagnetic resonance, muon spin resonance, and neutron spin echo. It is also important for the alignment of cosmic dust grains, which is a cause of the polarization of starlight .
The formula is: = =, where is the ... rely on the fact that bulk magnetization due to nuclear spins precess in a magnetic field at a rate called the Larmor frequency, ...
For calculations in accelerator and astroparticle physics, the formula for the cyclotron radius can be rearranged to give = (/) (/) (| | /) (/), where m denotes metres, c is the speed of light, GeV is the unit of Giga-electronVolts, is the elementary charge, and T is the unit of tesla.
Physically, an accelerating charge emits radiation (according to the Larmor formula), which carries momentum away from the charge. Since momentum is conserved, the charge is pushed in the direction opposite the direction of the emitted radiation. In fact the formula above for radiation force can be derived from the Larmor formula, as shown below.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Rydberg formula for quantum description of the EM radiation due to atomic orbital electrons; Jefimenko's equations; Larmor formula; Abraham–Lorentz force; Inhomogeneous electromagnetic wave equation; Wheeler–Feynman absorber theory also known as the Wheeler–Feynman time-symmetric theory; Paradox of a charge in a gravitational field
According to the Larmor formula in classical electromagnetism, a single point charge under acceleration will emit electromagnetic radiation. In some classical electron models a distribution of charges can however be accelerated so that no radiation is emitted. [1]