enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute zero - Wikipedia

    en.wikipedia.org/wiki/Absolute_zero

    Absolute zero is the lowest limit of the thermodynamic temperature scale; a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero-point energy -induced particle motion.

  3. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    At absolute zero (zero kelvins) the system must be in a state with the minimum possible energy. Entropy is related to the number of accessible microstates, and there is typically one unique state (called the ground state) with minimum energy. [1] In such a case, the entropy at absolute zero will be exactly zero.

  4. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    At absolute zero temperature, the system is in the state with the minimum thermal energy, the ground state. The constant value (not necessarily zero) of entropy at this point is called the residual entropy of the system. With the exception of non-crystalline solids (e.g. glass) the residual entropy of a system is typically close to zero. [2]

  5. Glossary of engineering: A–L - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_engineering:_A–L

    is zero-referenced against a perfect vacuum, using an absolute scale, so it is equal to gauge pressure plus atmospheric pressure. Absolute zero The lower limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as 0. Absolute zero is the point at which the ...

  6. Quantum phase transition - Wikipedia

    en.wikipedia.org/wiki/Quantum_phase_transition

    Diagram of temperature (T) and pressure (p) showing the quantum critical point (QCP) and quantum phase transitions. Talking about quantum phase transitions means talking about transitions at T = 0: by tuning a non-temperature parameter like pressure, chemical composition or magnetic field, one could suppress e.g. some transition temperature like the Curie or Néel temperature to 0 K.

  7. Gas laws - Wikipedia

    en.wikipedia.org/wiki/Gas_laws

    The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.

  8. List of states of matter - Wikipedia

    en.wikipedia.org/wiki/List_of_states_of_matter

    This is a low-energy phase that can only be formed in laboratory conditions and at very low temperatures. It must be close to absolute zero. Satyendra Nath Bose and Albert Einstein predicted the existence of such a state in the 1920s, but it was not observed until 1995 by Eric Cornell and Carl Wieman.

  9. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    In thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system.The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden.