enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

  3. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    Inflection points in differential geometry are the points of the curve where the curvature changes its sign. [2] [3]For example, the graph of the differentiable function has an inflection point at (x, f(x)) if and only if its first derivative f' has an isolated extremum at x.

  4. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Although the first derivative (3x 2) is 0 at x = 0, this is an inflection point. (2nd derivative is 0 at that point.) Unique global maximum at x = e. (See figure at right) x −x: Unique global maximum over the positive real numbers at x = 1/e. x 3 /3 − x: First derivative x 2 − 1 and second derivative 2x.

  5. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    A simple example of a point of inflection is the function f(x) = x 3. There is a clear change of concavity about the point x = 0, and we can prove this by means of calculus. The second derivative of f is the everywhere-continuous 6x, and at x = 0, f″ = 0, and the sign changes about this point. So x = 0 is a point of inflection.

  6. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    If ″ =, the second derivative test says nothing about the point , a possible inflection point. The reason the second derivative produces these results can be seen by way of a real-world analogy. Consider a vehicle that at first is moving forward at a great velocity, but with a negative acceleration.

  7. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.

  8. Instant view: Bitcoin vaults above $100,000 - AOL

    www.aol.com/news/instant-view-bitcoin-surges...

    Bitcoin prices are buoyant with crypto adoption possibly reaching an inflection point in the US. ... "The test will be if we do have a big puke in risk sentiment at some point, and we start to see ...

  9. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The above rules stating that extrema are characterized (among critical points with a non-singular Hessian) by a positive-definite or negative-definite Hessian cannot apply here since a bordered Hessian can neither be negative-definite nor positive-definite, as = if is any vector whose sole non-zero entry is its first. The second derivative test ...