enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    In geometry, the napkin-ring problem involves finding the volume of a "band" of specified height around a sphere, i.e. the part that remains after a hole in the shape of a circular cylinder is drilled through the center of the sphere.

  3. Graph homology - Wikipedia

    en.wikipedia.org/wiki/Graph_homology

    In algebraic topology and graph theory, graph homology describes the homology groups of a graph, where the graph is considered as a topological space. It formalizes the idea of the number of "holes" in the graph. It is a special case of a simplicial homology, as a graph is a special case of a simplicial complex. Since a finite graph is a 1 ...

  4. Desmos - Wikipedia

    en.wikipedia.org/wiki/Desmos

    In it, geometrical shapes can be made, as well as expressions from the normal graphing calculator, with extra features. [8] In September 2023, Desmos released a beta for a 3D calculator, which added features on top of the 2D calculator, including cross products, partial derivatives and double-variable parametric equations.

  5. Even-hole-free graph - Wikipedia

    en.wikipedia.org/wiki/Even-hole-free_graph

    While even-hole-free graphs can be recognized in polynomial time, it is NP-complete to determine whether a graph contains an even hole that includes a specific vertex. [ 3 ] It is unknown whether graph coloring and the maximum independent set problem can be solved in polynomial time on even-hole-free graphs, or whether they are NP-complete.

  6. Induced path - Wikipedia

    en.wikipedia.org/wiki/Induced_path

    The even-hole-free graphs are the graphs containing no induced cycles with an even number of vertices. The trivially perfect graphs are the graphs that have neither an induced path of length three nor an induced cycle of length four. By the strong perfect graph theorem, the perfect graphs are the graphs with no odd hole and no odd antihole.

  7. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)

  8. Graphing calculator - Wikipedia

    en.wikipedia.org/wiki/Graphing_calculator

    An early graphing calculator was designed in 1921 by electrical engineer Edith Clarke. [1] [2] [3] The calculator was used to solve problems with electrical power line transmission. [4] Casio produced the first commercially available graphing calculator in 1985. Sharp produced its first graphing calculator in 1986, with Hewlett Packard ...

  9. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    For holes, is the number of holes per unit volume in the valence band. To calculate this number for electrons, we start with the idea that the total density of conduction-band electrons, n 0 {\displaystyle n_{0}} , is just adding up the conduction electron density across the different energies in the band, from the bottom of the band E c ...