enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.

  3. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    For a torus, the first Betti number is b 1 = 2 , which can be intuitively thought of as the number of circular "holes" Informally, the kth Betti number refers to the number of k-dimensional holes on a topological surface. A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object.

  4. Runge's theorem - Wikipedia

    en.wikipedia.org/wiki/Runge's_theorem

    Given a holomorphic function f on the blue compact set and a point in each of the holes, one can approximate f as well as desired by rational functions having poles only at those three points. In complex analysis , Runge's theorem (also known as Runge's approximation theorem ) is named after the German mathematician Carl Runge who first proved ...

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Down the Rabbit Hole: ... It turns out functions like this have certain properties that cast insight into math topics like Algebra and Number Theory. ... All rational numbers, and roots of ...

  6. Genus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Genus_(mathematics)

    Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)

  7. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.

  8. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    Rational functions are quotients of two polynomial functions, and their domain is the real numbers with a finite number of them removed to avoid division by zero. The simplest rational function is the function , whose graph is a hyperbola, and whose domain is the whole real line except for 0.

  9. Trump promises 'hell to pay' if Gaza hostages not promptly ...

    www.aol.com/news/trump-promises-hell-pay-gaza...

    (Reuters) -U.S. President-elect Donald Trump said on Monday there would be "hell to pay" in the Middle East if hostages held in the Gaza Strip were not released prior to his Jan. 20 inauguration.