Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant ro
Daily time dilation (gain or loss if negative) in microseconds as a function of (circular) orbit radius r = rs/re, where rs is satellite orbit radius and re is the equatorial Earth radius, calculated using the Schwarzschild metric. At r ≈ 1.497 [Note 1] there is no time dilation. Here the effects of motion and reduced gravity cancel.
Therefore, as the body accumulates matter at a given fixed density (in this example, 997 kg/m 3, the density of water), its Schwarzschild radius will increase more quickly than its physical radius. When a body of this density has grown to around 136 million solar masses (1.36 × 10 8 M ☉ ), its physical radius would be overtaken by its ...
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.
A number of other tests have probed the validity of various versions of the equivalence principle; strictly speaking, all measurements of gravitational time dilation are tests of the weak version of that principle, not of general relativity itself. So far, general relativity has passed all observational tests. [32]
A more explicit description can be given using tensors. The crucial feature of tensors used in this approach is the fact that (once a metric is given) the operation of contracting a tensor of rank R over all R indices gives a number - an invariant - that is independent of the coordinate chart one uses to perform the contraction. Physically ...