Search results
Results from the WOW.Com Content Network
Refractory metals have high melting points, with tungsten and rhenium the highest of all elements, and the other's melting points only exceeded by osmium and iridium, and the sublimation of carbon. These high melting points define most of their applications. All the metals are body-centered cubic except rhenium which is hexagonal close-packed.
Hafnium diboride also suffers from high susceptibility to material degradation with boron transmutation, [70] but its high melting point of 3,380 °C and the large thermal neutron capture cross section of hafnium of 113 barns and low reactivity with refractory metals such as tungsten makes it an attractive control rod material when clad with a ...
Hafnium carbide is the most refractory binary compound known, with a melting point of 3890 °C. [8] [9] The ternary compound tantalum hafnium carbide has one of the highest melting points of all known compounds (4215 °C). [10] [11] Molybdenum disilicide has a high melting point of 2030 °C and is often used as a heating element.
For refractory materials (e.g. platinum, tungsten, tantalum, some carbides and nitrides, etc.) the extremely high melting point (typically considered to be above, say, 1,800 °C) may be determined by heating the material in a black body furnace and measuring the black-body temperature with an optical pyrometer. For the highest melting materials ...
Very few measurements of melting point in tantalum hafnium carbide have been reported, because of the obvious experimental difficulties at extreme temperatures. A 1965 study of the TaC-HfC solid solutions at temperatures 2,225–2,275 °C found a minimum in the vaporization rate and thus maximum in the thermal stability for Ta 4 HfC 5 .
On the other side bulk ceramics made of ultra-high temperature ceramics (e.g. ZrB 2, HfB 2, or their composites) are hard materials which show low erosion even above 2000 °C but are heavy and suffer of catastrophic fracture and low thermal shock resistance compared to CMCs. Failure is easily under mechanical or thermo-mechanical loads because ...
The alloys of tantalum–tungsten have high corrosion resistance, and refractory properties. The crystalline structure of the material is body-centered cubic with a substitutional solid solution with atoms of tungsten. The alloy also has a high melting point and can reach high elastic modulus and high tensile strength. [3]
Tungsten's high melting point makes tungsten a good material for applications like rocket nozzles, for example in the UGM-27 Polaris submarine-launched ballistic missile. [80] Tungsten alloys are used in a wide range of applications, including the aerospace and automotive industries and radiation shielding. [ 81 ]