Search results
Results from the WOW.Com Content Network
When working with graphs that are too large to store explicitly (or infinite), it is more practical to describe the complexity of breadth-first search in different terms: to find the nodes that are at distance d from the start node (measured in number of edge traversals), BFS takes O(b d + 1) time and memory, where b is the "branching factor ...
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.
A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process. This algorithm is often used to find the shortest path from one vertex to another.
The breadth-first search starts at , and the shortest distance () of each vertex from is recorded, dividing the graph into discrete layers. Additionally, each vertex v {\displaystyle v} keeps track of the set of vertices which in the preceding layer which point to it, p ( v ) {\displaystyle p(v)} .
By contrast, a breadth-first search will never reach the grandchildren, as it seeks to exhaust the children first. A more sophisticated analysis of running time can be given via infinite ordinal numbers ; for example, the breadth-first search of the depth 2 tree above will take ω ·2 steps: ω for the first level, and then another ω for the ...
In computer science, lexicographic breadth-first search or Lex-BFS is a linear time algorithm for ordering the vertices of a graph.The algorithm is different from a breadth-first search, but it produces an ordering that is consistent with breadth-first search.
The problem of determining whether two vertices in a graph are connected can be solved efficiently using a search algorithm, such as breadth-first search. More generally, it is easy to determine computationally whether a graph is connected (for example, by using a disjoint-set data structure), or to count the number of connected components.
In any graph, directed or undirected, there is a straightforward algorithm for finding a widest path once the weight of its minimum-weight edge is known: simply delete all smaller edges and search for any path among the remaining edges using breadth-first search or depth-first search.