enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    The practical problem of checking whether a coin is fair might be considered as easily solved by performing a sufficiently large number of trials, but statistics and probability theory can provide guidance on two types of question; specifically those of how many trials to undertake and of the accuracy of an estimate of the probability of ...

  3. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    A fair coin, when tossed, should have an equal chance of landing either side up. In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin.

  4. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives. It is a form of sortition which inherently has two possible outcomes.

  5. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The entropy of the unknown result of the next toss of the coin is maximized if the coin is fair (that is, if heads and tails both have equal probability 1/2). This is the situation of maximum uncertainty as it is most difficult to predict the outcome of the next toss; the result of each toss of the coin delivers one full bit of information.

  6. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    For example, a fair coin toss is a Bernoulli trial. When a fair coin is flipped once, the theoretical probability that the outcome will be heads is equal to 1 ⁄ 2. Therefore, according to the law of large numbers, the proportion of heads in a "large" number of coin flips "should be" roughly 1 ⁄ 2.

  7. Gambler's fallacy - Wikipedia

    en.wikipedia.org/wiki/Gambler's_fallacy

    If a fair coin is flipped 21 times, the probability of 21 heads is 1 in 2,097,152. The probability of flipping a head after having already flipped 20 heads in a row is ⁠ 1 / 2 ⁠. Assuming a fair coin: The probability of 20 heads, then 1 tail is 0.5 20 × 0.5 = 0.5 21; The probability of 20 heads, then 1 head is 0.5 20 × 0.5 = 0.5 21

  8. Coupling (probability) - Wikipedia

    en.wikipedia.org/wiki/Coupling_(probability)

    Assume two biased coins, the first with probability p of turning up heads and the second with probability q > p of turning up heads. Intuitively, if both coins are tossed the same number of times, we should expect the first coin turns up fewer heads than the second one.

  9. Feller's coin-tossing constants - Wikipedia

    en.wikipedia.org/wiki/Feller's_coin-tossing...

    Feller's coin-tossing constants are a set of numerical constants which describe asymptotic probabilities that in n independent tosses of a fair coin, no run of k consecutive heads (or, equally, tails) appears. William Feller showed [1] that if this probability is written as p(n,k) then