enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...

  3. Silicon - Wikipedia

    en.wikipedia.org/wiki/Silicon

    4 derivatives where the central silicon atom shares an electron pair with each of the four atoms it is bonded to. [49] The first four ionisation energies of silicon are 786.3, 1576.5, 3228.3, and 4354.4 kJ/mol respectively; these figures are high enough to preclude the possibility of simple cationic chemistry for the element.

  4. Electron density - Wikipedia

    en.wikipedia.org/wiki/Electron_density

    Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either ρ ( r ) {\displaystyle \rho ({\textbf {r}})} or n ( r ) {\displaystyle n ...

  5. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    Typical electron mobility at room temperature (300 K) in metals like gold, copper and silver is 30–50 cm 2 /(V⋅s). Carrier mobility in semiconductors is doping dependent. In silicon (Si) the electron mobility is of the order of 1,000, in germanium around 4,000, and in gallium arsenide up to 10,000 cm 2 /(V⋅s).

  6. Effective mass (solid-state physics) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(solid...

    These band structure distortions are a result of changes in electron–phonon interaction energies, with the lattice's thermal expansion playing a minor role. [8] Similarly, the number of holes in the valence band, and the density of states effective mass of holes are defined by:

  7. Electronic specific heat - Wikipedia

    en.wikipedia.org/wiki/Electronic_specific_heat

    In solid state physics the electronic specific heat, sometimes called the electron heat capacity, is the specific heat of an electron gas. Heat is transported by phonons and by free electrons in solids. For pure metals, however, the electronic contributions dominate in the thermal conductivity.

  8. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    For gases, departure from 3 R per mole of atoms is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to ...

  9. Two-dimensional electron gas - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_electron_gas

    The two-dimensional electron system in graphene can be tuned to either a 2DEG or 2DHG (2-D hole gas) by gating or chemical doping. This has been a topic of current research due to the versatile (some existing but mostly envisaged) applications of graphene. [2] A separate class of heterostructures that can host 2DEGs are oxides.