Search results
Results from the WOW.Com Content Network
In theoretical physics, the problem of time is a conceptual conflict between quantum mechanics and general relativity.Quantum mechanics regards the flow of time as universal and absolute, whereas general relativity regards the flow of time as malleable and relative.
Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.
Reconciliation of general relativity with the laws of quantum physics remains a problem, however, as there is a lack of a self-consistent theory of quantum gravity. It is not yet known how gravity can be unified with the three non-gravitational forces: strong, weak and electromagnetic.
Action principles are the basis for Feynman's version of quantum mechanics, general relativity and quantum field theory. The action principles have applications as broad as physics, including many problems in classical mechanics but especially in modern problems of quantum mechanics and general relativity.
Theoretical physicists have not yet formulated a widely accepted, consistent theory that combines general relativity and quantum mechanics to form a theory of everything. Trying to combine the graviton with the strong and electroweak interactions leads to fundamental difficulties and the resulting theory is not renormalizable. The ...
The quest for a quantum version of general relativity addresses one of the most fundamental open questions in physics. While there are promising candidates for such a theory of quantum gravity , notably string theory and loop quantum gravity , there is at present no consistent and complete theory.
It rapidly became a significant and necessary tool for theorists and experimentalists in the new fields of atomic physics, nuclear physics, and quantum mechanics. By comparison, general relativity did not appear to be as useful, beyond making minor corrections to predictions of Newtonian gravitation theory. [3]
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.