Search results
Results from the WOW.Com Content Network
A hypertonic solution has a greater concentration of non-permeating solutes than another solution. [2] In biology, the tonicity of a solution usually refers to its solute concentration relative to that of another solution on the opposite side of a cell membrane ; a solution outside of a cell is called hypertonic if it has a greater ...
This is because as the solution surrounding the cell is hypertonic, exosmosis takes place and the space between the cell wall and cytoplasm is filled with solutes, as most of the water drains away and hence the concentration inside the cell becomes more hypertonic. There are some mechanisms in plants to prevent excess water loss in the same way ...
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
[2]: 229–230 In a hypertonic environment, the cell has a lower concentration of solutes than the surrounding extracellular fluid, and water diffuses out of the cell by osmosis, causing the cytoplasm to decrease in volume. As a result, the cell shrinks and the cell membrane develops abnormal notchings.
Hypertonic Saline which contains sodium chloride works in regulating ICP, intravascular volume and cardiac output without causing significant diuresis, but there are theoretical side effects ranging from neurological complications to subdural hematoma. Hypertonic saline solution has been choice of neuro critical care for the past few years. [1]
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
When the cell is in a hypertonic solution, water flows out of the cell, which decreases the cell's volume. When in a hypotonic solution, water flows into the membrane and increases the cell's volume, while in an isotonic solution, water flows in and out of the cell at an equal rate. [4]
For example, the intracellular fluid and extracellular can be hyperosmotic, but isotonic – if the total concentration of solutes in one compartment is different from that of the other, but one of the ions can cross the membrane (in other words, a penetrating solute), drawing water with it, thus causing no net change in solution volume.