enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Martensite - Wikipedia

    en.wikipedia.org/wiki/Martensite

    Martensite has a lower density than austenite, so that the martensitic transformation results in a relative change of volume. [4] Of considerably greater importance than the volume change is the shear strain, which has a magnitude of about 0.26 and which determines the shape of the plates of martensite. [5]

  3. Austenite - Wikipedia

    en.wikipedia.org/wiki/Austenite

    At high cooling rates, the material will transform from austenite to martensite which is much harder and will generate cracks at much lower strains. The volume change (martensite is less dense than austenite) [9] can generate stresses as well. The difference in strain rates of the inner and outer portion of the part may cause cracks to develop ...

  4. Maraging steel - Wikipedia

    en.wikipedia.org/wiki/Maraging_steel

    This change in macroscopic behavior of the material can be linked to the evolution of microstructure from dimple to quasi-cleavage fracture morphology. [13] Aging followed by solution treatment of selective laser melted steels also reduces the amount of retained austenite in the martensitic matrix and lead to change in the grain orientation. [14]

  5. Martensitic stainless steel - Wikipedia

    en.wikipedia.org/wiki/Martensitic_stainless_steel

    Martensitic stainless steels can be high- or low-carbon steels built around the composition of iron, 12% up to 17% chromium, carbon from 0.10% (Type 410) up to 1.2% (Type 440C): [9] Up to about 0.4%C they are used mostly for their mechanical properties in applications such as pumps, valves, and shafts.

  6. Alloy steel - Wikipedia

    en.wikipedia.org/wiki/Alloy_steel

    The properties of steel depend on its microstructure: the arrangement of different phases, some harder, some with greater ductility. At the atomic level, the four phases of auto steel include martensite (the hardest yet most brittle), bainite (less hard), ferrite (more ductile), and austenite (the most ductile). The phases are arranged by ...

  7. Austenitic stainless steel - Wikipedia

    en.wikipedia.org/wiki/Austenitic_stainless_steel

    Austenitic stainless steel is one of the five classes of stainless steel as defined by crystalline structure (along with ferritic, martensitic, duplex and precipitation hardened). [1] Its primary crystalline structure is austenite (face-centered cubic). Such steels are not hardenable by heat treatment and are essentially non-magnetic. [2]

  8. Tempering (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Tempering_(metallurgy)

    Austenite has much higher stacking-fault energy than martensite or pearlite, lowering the wear resistance and increasing the chances of galling, although some or most of the retained austenite can be transformed into martensite by cold and cryogenic treatments prior to tempering.

  9. Dual-phase steel - Wikipedia

    en.wikipedia.org/wiki/Dual-phase_steel

    Virtually generated microstructure of dual-phase steel. [1]Dual-phase steel (DP steel) is a high-strength steel that has a ferritic–martensitic microstructure. DP steels are produced from low or medium carbon steels that are quenched from a temperature above A 1 but below A 3 determined from continuous cooling transformation diagram.