Search results
Results from the WOW.Com Content Network
Results are generally communicated as the dynamic structure factor (also called inelastic scattering law) (,), sometimes also as the dynamic susceptibility ′ ′ (,) where the scattering vector is the difference between incoming and outgoing wave vector, and is the energy change experienced by the sample (negative that of the scattered neutron).
In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns ( interference patterns ) obtained in X-ray , electron and neutron ...
In condensed matter physics, the dynamic structure factor (or dynamical structure factor) is a mathematical function that contains information about inter-particle correlations and their time evolution. It is a generalization of the structure factor that considers correlations in both space and time.
In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom. The atomic form factor depends on the type of scattering, which in turn depends on the nature of the incident radiation, typically X-ray, electron or neutron.
It is somewhat analogous to the structure factor in solid-state physics, and the form factor (quantum field theory). The nucleon (proton and neutron) electromagnetic form factors describe the spatial distributions of electric charge and current inside the nucleon and thus are intimately related to its internal structure; these form factors are ...
The Debye–Waller factor (DWF), named after Peter Debye and Ivar Waller, is used in condensed matter physics to describe the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion. [1] [2] It is also called the B factor, atomic B factor, or temperature factor.
A neutron may pass by a nucleus with a probability determined by the nuclear interaction distance, or be absorbed, or undergo scattering that may be either coherent or incoherent. [1] The interference effects in coherent scattering can be computed via the coherent scattering length of neutrons, being proportional to the amplitude of the ...
Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material.