Search results
Results from the WOW.Com Content Network
The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or 𝟙), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use.
Consider the following differential equation Lf = sin(x) with =.. The fundamental solutions can be obtained by solving LF = δ(x), explicitly, = ().. Since for the unit step function (also known as the Heaviside function) H we have = (), there is a solution = +.
The product of a step function with a number is also a step function. As such, the step functions form an algebra over the real numbers. A step function takes only a finite number of values. If the intervals , for =,, …, in the above definition of the step function are disjoint and their union is the real line, then () = for all .
In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.
If f is a Schwartz function, then τ x f is the convolution with a translated Dirac delta function τ x f = f ∗ τ x δ. So translation invariance of the convolution of Schwartz functions is a consequence of the associativity of convolution. Furthermore, under certain conditions, convolution is the most general translation invariant operation.
The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Effect of smoothing on data points with uncorrelated noise of unit standard deviation. For example, If the noise in all data points is uncorrelated and has a constant standard deviation, σ, the standard deviation on the noise will be decreased by convolution with an m-point smoothing function to [26] [note 5]