Search results
Results from the WOW.Com Content Network
Polarizability has the SI units of C·m 2 ·V −1 = A 2 ·s 4 ·kg −1 while its cgs unit is cm 3. Usually it is expressed in cgs units as a so-called polarizability volume, sometimes expressed in Å 3 = 10 −24 cm 3. One can convert from SI units to cgs units (′) as follows:
In the CGS system of units the Clausius–Mossotti relation is typically rewritten to show the molecular polarizability volume ′ = which has units of volume [m 3]. [2] Confusion may arise from the practice of using the shorter name "molecular polarizability" for both α {\displaystyle \alpha } and α ′ {\displaystyle \alpha '} within ...
It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units. [ a ] The term "cgs units" is ambiguous and therefore to be avoided if possible: there are several variants of CGS, which have conflicting definitions of electromagnetic quantities and units.
In many materials the polarizability starts to saturate at high values of electric field. This saturation can be modelled by a nonlinear susceptibility. These susceptibilities are important in nonlinear optics and lead to effects such as second-harmonic generation (such as used to convert infrared light into visible light, in green laser pointers).
In the CGS-ESU system, charge q is therefore has the dimension to M 1/2 L 3/2 T −1. Other units in the CGS-ESU system include the statampere (1 statC/s) and statvolt (1 erg/statC). In CGS-ESU, all electric and magnetic quantities are dimensionally expressible in terms of length, mass, and time, and none has an independent dimension.
The polarizability of individual particles in the medium can be related to the average susceptibility and polarization density by the Clausius–Mossotti relation. In general, the susceptibility is a function of the frequency ω of the applied field.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
However, care is needed because some authors [6] take out the factor from (), so that = and hence () = /, which is convenient because then the (hyper-)polarizability may be accurately called the (nonlinear-)susceptibility per molecule, but at the same time inconvenient because of the inconsistency with the usual linear polarisability definition ...